Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) 3 Tech IV Year II Semester Regular & Supplementary Examinations, July 202

B.Tech IV Year II Semester Regular & Supplementary Examinations July-2021 GROUND WATER HYDROLOGY-WELLS AND PUMPS

(Agricultural Engineering)

Time: 3 hours

Max. Marks: 60

R16

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1	a	write down the equation for porosity, specific yield, transmissibility, hydraulic	LI	4 M
	h	State Darcy's law and Write the validation of Darcy's law	12	4 M
	0	A field sample of an unconfined equifer is packed in a test sulinder. The length and		41VI
	C	A neid sample of an unconfined aquifer is packed in a test cylinder. The length and	L4	4111
		diameter of the cylinder are 50 cm and 6 cm, respectively. The field sample is tested		
		for a period of 3 min under a constant head difference of 16.3 cm. As a result, 45.2		
		cm3 of water is collected at the outlet. Determine the hydraulic conductivity of the		
		aquifer sample.		
		OR		
2	a	Write the classification of aquifer and explain them with neat diagram.	L3	6M
	b	In an area of 200 ha, the water table declines by 3.5 m. If the porosity of the aquifer	L1	6M
		material is 30% and the specific retention is 15%, determine: (i) Specific yield of the		
		aquifer, and (ii) Change in groundwater storage.		
		UNIT-II		
3	a	Derive an expression to determine the aquifer characteristics from confined aquifer	L1	6M
		under steady state condition.		
	b	Explain the back-washing methods for developing wells	L2	6M
		OR		
4	a	Describe Chow's method of solution to determine the aquifer parameters.	L3	4M
	b	Discuss briefly about well interference in confined and unconfined aquifer systems	L2	8 M
		with neat labelled diagram.		
		UNIT-III		
5	a	Derive equation for power from windmill	L3	6M
	b	Explain direct methods of artificial groundwater recharge	L2	6M